## Illustrative Mathematics

## 8.SP US Airports, Assessment Variation

## Alignments to Content Standards

• Alignment: 8.SP.A.3

## Tags

Tags: summative assessment, SAP

The scatter plot below shows the relationship between the number of airports in a state and the population of that state according to the 2010 Census. Each dot represents a single state.

The number of airports in each state comes from data on http://www.nationalatlas.gov/atlasftp.html?openChapters=chptrans#chptrans . The data for population comes from the 2010 census: http://www.census.gov/2010census/data/



- a. How would you characterize the relationship between the number of airports in a state and the state's population? (Select one):
  - i. The variables are positively associated; states with higher populations tend to have fewer airports.
  - ii. The variables are negatively associated; states with higher populations tend to have fewer airports.
  - iii. The variables are positively associated; states with higher populations tend to have more airports.
  - iv. The variables are negatively associated; states with higher populations tend to have more airports.
  - v. The variables are not associated.

LaToya uses the function  $y = (1.35 \times 10^{-6})x + 6.1$  to model the relationship between the number of airports, y and the population in a state, x.

| D. TI     | ow many airports does LaToya's model predict for a state with a population of 30 million people?                                                                                                           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pc        | hat does the number 6.1 that appears in LaToya's function mean in the context of airports vs. opulations? (Select one.)  The average number of airports in a state is 6.1.                                 |
| ii.       | The median number of airports in a state is 6.1.                                                                                                                                                           |
| iii.      | The model predicts a population of 6.1 people in a state with no airports.                                                                                                                                 |
| iv.       | The model predicts 6.1 airports in a state with no people.                                                                                                                                                 |
| v.        | The model predicts that 6.1 states have no airports.                                                                                                                                                       |
| vi.       | The model predicts 6.1 more airports, on average, for each additional person in a state.                                                                                                                   |
| vii.      | The model predicts 6.1 fewer airports, on average, for each additional person in a state.                                                                                                                  |
| viii.     | The number 6.1 cannot be interpreted in this context.                                                                                                                                                      |
| VS        | hat does the number $1.35\times 10^{-6}$ that appears in LaToya's function mean in the context of airports populations? (Select one.)  The average number of airports in a state is $1.35\times 10^{-6}$ . |
| ii.       | The median number of airports in a state is $1.35 \times 10^{-6}$ .                                                                                                                                        |
| iii.      | The model predicts $1.35 \times 10^{-6}$ airports in a state with no people.                                                                                                                               |
| iv.       | The model predicts $1.35 \times 10^{-6}$ people in a state with no airports.                                                                                                                               |
| ٧.        | The model predicts that $1.35 \times 10^{-6}$ states have no airports.                                                                                                                                     |
| vi.       | The model predicts $1.35 \times 10^{-6}$ more airports, on average, for each additional person in a state.                                                                                                 |
| ·<br>víi. | The model predicts $1.35 \times 10^{-6}$ fewer airports, on average, for each additional person in a state.                                                                                                |
| viii.     | The number $1.35 \times 10^{-6}$ cannot be interpreted in this context.                                                                                                                                    |
| e. Fil    | ll in the following newspaper headline based on this relationship:                                                                                                                                         |
|           | On average, a state in the contiguous 48 US states has 1 additional airport for every                                                                                                                      |
|           | additional people.                                                                                                                                                                                         |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           |                                                                                                                                                                                                            |
|           | •                                                                                                                                                                                                          |
|           |                                                                                                                                                                                                            |
|           | po i. ii. iv. v. vi. viii. iv. v. vi. viii. vv. vi. vi                                                                                                                                                     |